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SUMMARY

Large downstream movements of transition observed when the leading
edge of a hollow cylinder or a flat plate is slightly blunted are ex-
plained in terms of the reductilon in"Reynolds number at the outer edge
of the boundary layer due to the detached shock wave. The magnitude of
this reduetion is computed for cones and wedges for Mach numbers to 20.
Concurrent changes in "outer-edge" Mach number and temperature are
found to be in the direction that would increase the stability of the
laminar boundary layer.

The hypothesis is made that transition Reynolds number is substan-
tially unchanged when a sharp leading edge or tip 1s blunted. This
hypothesis leads to the conclusion that the downstream movement of tran-
sition is inversely proportional to the ratio of surface Reynolds number
with blunted tip or leading edge to surface Reynolds number with sharp
tip or leading edge. This conclusion is in good agreement with the
hollow-cylinder result at Mach 3.1.

Application of this hypothesis to other Mach numbers yields the
result that blunting the tip of slender cones or the leading edge of
thin wedges should produce downstream movements of transition by factors
ranging from 2 at Mach 3.0 to 30 at Mach 15. The significance of this
result is discussed with regerd to the possible reduction in over-all

" heat-transfer rate and friction drag for aircraft flylng at high super-

sonic speeds.

Mach number profiles near the surfaces of blunted cones and wedges
are computed for an assumed shape of the detached shock wave at flight
Mach numbers to 20. The dissipation and gtabillty of these profiles are
discussed, and a method is described for estimating the amount of blunt-
ing required to produce the maximim possible downstream movement of
transition.
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INTRODUCTTION

In an investigation of the boundary layer on a hollow cylinder
alined with the stream direction, Brinich and Diaconis discovered that
the transition point moved downstream when the leading edge was slightly
blunted (ref. 1). Similar results were cbtained with a flat-plate wing
in reference 2. A more extensive investigation of the effects of
leading-edge geometry on transition (ref. 3) confirmed previous results
and led directly to the explanation contained herein of the effect of
blunting on transition.

When & cone or wedge is blunted slightly (sketch 1), the flow is

/

Preséure
coefficient

Sketch 1

changed in several ways, each of which could have a noticeable effect on
the tramsition location. A favorable static-pressure gradlent is estab-
lished near the vertex which could tend to stabilize the laminar layer.
Downstream of the shoulder, however, the static-pressure gradient is
adverse (for moderate supersonic speeds) because of the overexpansion
around the shoulder and subsequent recompression to the value corre-
sponding to the unblunted cone or wedge. The effect of static-pressure
gradient on trensition is therefore inconclusive.
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In addition to the static-pressure gradient along the surface, the
blunting produces a stagnation-pressure gradient normal to the surface.
This gradient results from the variation in stagnation-pressure loss as
the detached shock decays from the normal-shock strength at the vertex
to the strength corresponding to the unblunted body at some distance
from the vertex. For inviscid flow, the stagnation pressure along each
streamline remains constant downstream of the shock; hence, this gradi-
ent normal to the surface would persist along the entire length of the
body. In the constant-static-pressure region a few bluntness diameters
downstream of the vertex, the stagnation-pressure gradient results in a
shear layer whose thickness depends on the size of the blunted portion
of the body.

The fact that the entropy gradient produced by strongly curved
shock waves might have appreciable effect on the development of the
boundary layer is’ pointed out in references 4 and 5. Previously, the
author of the present report had evaluated the shear profiles produced
by detached shock waves near the surface of blunted flat plates. An
explanation of the observed movement of transition in terms of these
shear profiles was therefore sought.

The interaction of the boundary layer with the shear profile pro-
duced by a detached shock wave is fundamentally a very difficult analyt-
ical problem; however, the condition of most interest is onme for which
the interaction of the two profiles is not important. Thus, if the
shear profile produced by blunting is much thicker than the boundary
layer, the rate of shear of the former is negligible compared with that
of the latter. The boundary layer then develops in a region of negli-
gible shear and in a layer whose Mach pnumber is almost constant and is
less than that produced by & sherp cone or wedge.

Of particular significance is the fact that the reglon of reduced

Mach number neasr the surface is also a region of reduced Reynolds number .1

Until the boundary layer enguifs this region, its stebility and transi-
tion characteristics, as well as its friction and heat-transfer charac-
teristics, should be those assocliated with the reduced Reynolds number.
This reduction in Reynolds pumber near the surface of blunted bodies
explains the downstream movement of transition observed in references 1
to 3, and is the basis used in this report for comparing the boundary-
layer characteristics of blunted and unblunted bodies.

1Phis reduction in surface Reynolds number due to blunting and its
effect on laminar heating have recently been independently calculated in
ref. 6 for hypersonic speeds. No attempt was made, however, to define
the thickness and axial extent of the low Reynolds number layer or its
effect on transition location.
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ANATYSTES

The Mach number in the inviscid shear layer produced near the sur-
face of blunted cones and wedges increases continuously from the surface
value to the value that would exist at the surface of the corresponding
unblunted bodies. The Reynolds number per unit length at the outer edge
of the boundary layer ("outer-edge" Reynolds number) therefore remains
less than the free-stream (or unblunted) value until the boundary layer
absorbs the entire shock-produced shear layer. If the transition point
is determined primarily by the Reynolds number at the outer edge of the
boundary layer, a progressive downstream movement of transition would
therefore be expected as the leading edge or tip bluntness is gradually
increased. The maximum downstreem movement would be expected when the
blunting is sufficiently great so that the outer-edge Reynolds number
is close to the inviscid surface value for the entire laminar run. In
the following sections, the maximum reduction in outer-edge Reynolds
number is calculated, and the blunted area required to produce this
maximum reduction over the entire leminar layer is estimated.

Reduction in Surface Reynolds Number Due to Blunting

At a station sufficiently far downstream of the vertex, where the
surface static pressure for a blunted body is clogse to that of the un-
blunted body, the Reynolds number near the surface can be written as

Reg ooy i [F1 My W
Re; 7 oy 1y Ty My ey
where subscripts n and 1 refer to inviscid surface values for the
blunted and unblunted bodies, respectively. (All symbols are defined
in appendix A.) These inviscid surface values will be assumed, as

usuel, to represent the outer-edge conditions that determine boundary-
layer development.

The use of Sutherland's viscosity equation yields

2
Ren tl tn + S MI]
Rey = (%;) ("—‘tl 2 s)n‘l (2)

Dividing the pumerator and denominator by the ambient static temperature
to end converting to Mach number functioms yield

E:Dzr—}% (3)
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where

D= ' 3 (4)

and

‘r Mg %

Ts | (5)

Y -1.z %
Y - L2 0
1+ 5 My

The inviscid surface Mach number for the blunted body Mn is de-
termined by the ratio Pl/P » where Py is the static pressure at the

surface of the unblunted body and P, is the stagnation pressure down-
stream of a normal shock at the free—stream Mach number My. The in-
vigcid surface Mach numbers are shown in figure 1 as a function of Mb
for several cone and wedge angles. Since the total pressure P, 1is
less than the total pressure at the surface for unblunted bodies, the -
surface Mach number M, for the blunted bodies is less than the sur-
face Mach number for the unblunted bodies M;. The difference between

M, and M; increases as flight Mach number increases.

The Reynolds number ratio of equation (3) is plotted in figure 2
for the same cone and wedge angles a&s those in figure 1. This ratio
decreases rapldly as flight Mach number increases. If the transition
Reynolds number is unchanged when the leading edge or tip is blunted,
and if the blunting is adequate to cover the laminar boundary layer with
& sufficiently thick layer of low Reynolds number air, then it should be
possible to increase the length of laminar run by a factor inversely
proportional to the Reynolds number ratio of figure 2. For slender
cones and wedges, the possible increases in laminar run range from fac-
torg of the order of 2.0 at My = 3.0 to 10 at Mg = 8.0 and 30 at

Mo = 15.0. The significance of such large increases in laminar run for

reducing the heat-transfer rate and friction drag for very high-speed
aircraft is apparent.

Evidence thet increases in laminar run of the magnitude indicated
by figure 2 are actually attaineble is presented in references 1 %o 3.

e e e e e st e e
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In reference 3, for example, the transition point at My = 3.1 was
moved downstream by a factor of 2 (from 5 to 10 in. at & Reynolds

number of 3.56X105/in.) when the leading-edge thickness was increased
from 0.0008 to 0.008 inch. This experimental movement of transition
compares very favorably with the value 2.17 predicted on the basis of
the Reynolds number reduction shown in figure 2(b).

In reference 2, downstream movements by factors ranging from 2.3
1o 3.6 were observed for a blunted flat plate at various angles of
attack at Mg = 4.04. The movement predicted by figure Z(b) for this

Mach pumber is 3.57. For swept wings, little or no downstream movement
was observed in reference 2. This is in agreement with the expected
weakening of the leading-edge shock due to sweepback. Whether down-
stream movements of the order of megnitude predicted by figure 2 are
attainable at higher Mach number or for other body shapes remains to
be established by further experiments. '

Estimation of Bluntness Required to Obtain
Maximum Movement of Transition

In order to determine the bluntness area required to cover the
entire laminar boundary layer with a low Reynolds number layer of neg-
ligible gradient, it is convenient to define a thickness of this layer
which limits the Mach number to values near the inviscid surface value.
A suitable thickness is the distance from the surface to the streamline
that passes through the sonic point of the detached shock wave (point
where the Mach number Just behind the shock is unity). From the vertex
to the sonic point the stagnation pressure downstream of the shock does
not vary greatly; consequently, the Mach number should remain near the
inviscid surface value in the layer thus defined.

An expression for the thickness will be derived under the assump-
tion that the shear profile produced by the detached shock does not
diffuse or dissipate, that is, the profile remains unchanged until it
is engulfed by the boundary layer. The rate of digsipation of the
shock-produced shear layer is discussed in appendix B, and tends to in-
crease the bluntness area required to produce a given thickness of the
low Mach number layer.

With dissipation neglected, the thickness of the low Mach number
region can be estimated by means of the detached-shock-wave theory of
reference 7. In this theory, the detached shock wave is assumed to
have a hyperbolic form independent of the shape of the body that pro-
duces it. This form has been found to sgree well with experimental re-
sults for a large range of body shapes in the moderate supersonic Mach

3880
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number range (ref. 8), but becomes more questionable as the Mach number
increases. The portion of the shock from the vertex to the sonic point,
however, can be satisfactorily represented by the assumed hyperbola for
all Mach numbers. This form of the shock wave should, therefore, yield
a satisfactory estimate of the thickness of the low Mach number layer as
well as the shock location, to the extent that the other assumptions of
the theory (constant specific heat, inviscid flow, etc.) are valid.

In order to estimate this thickness, the Mach number in the layer
is assumed to be constant at a value corresponding to the mass centroid
of the layer. This Mach number, denoted by My, is determined from the

ratio pl/PC, where p; 1is the static pressure on the surface of the un-~
blunted cone or wedge and Pr is the total pressure downstream of the

shock on the centroid streamline. (A simple and satisfactory estimate
of Pp can be obtained by using the arithmetic mean of the stagnation

pressures at the sonic point and at the vertex.) The continuity equa-
tion for the layer shown in sketch 2 can be written

PoAn(A%/B)y, = PoAg(A%/A)y, : (6)

Sketch 2

where A, 1is the area of the low Mach number layer and Ag is the free-

stream area of the gtream tube between the axis and the shock sonic point
S. If the bluntness of the body is defined as its cross-sectional area
at the sonic point Agp (sketch 2), the ratio of the area of the low
Mach number layer to the blunted area becomes

hy kg my B
Asp  Agp Po W/l (7,.)
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From reference 7,

As 1
Agg " 1T - B cos 7 (8)

' P
where B = §§ (A*/A)MO, and 1 1is the mean inclination of the sonic
line defined in reference 7.

The area of the low Mach number layer defined by equation (7) is
shown in figure 3. This area is seen to increase rapidly with increas-
ing Mach numbers for the blunted flat plate (9W== 0) and for the blunt-

nosed cylinder (Gc = 0). However, for wedge half-angles greater than

5° and copne half-angles greater than 10°, the area does not vary greatly
with Mach number. :

With the thickness of the low Mach number and low Reynolds number
layer thus defined, the blunting required to provide & low external-
stream Reynolds number for the entire laminar boundary layer to the ex-
pected or hoped-for transition point can be estimated. This is done by
calculating the laminar boundary-lsyer thickness at the expected tran-
sition Reynolds number, which is based on conditions in the low Mach
number layer near the surface. By equating this thickness to the thick-
ness of the low Reynolds number layer, the required values of the blunt-
ness area can be calculated.

Thus, for blunted wedges the required ordinate at the body sonic
point is

str ( 9)

Vs * (A, /Agp)

vhile for blunted cones (with 8. << ry),

- R 1/2
o - [ o

where An/ASB is given in figure 3, end 1y 4; 18 the radiue of the

blunted cone at the expected transition point. Equations (9) and (10)
show that the amount of blunting required to cover the laminar boundary
layer with a low Reynolds number layer is not large. For the wedge
(eq. (9)), the ordinate of the body at the sonic point need be only of
the order of magnitude of the boundary-layer thickness at the expected
transition point; for the cone (eq. (10)), the required radius of the
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body at the sonic point is of the order of the geometric mean of the
body radius and the boundary-layer thickness at the expected transition
point.

The required bluntness is considerebly reduced if the displacement
effect is considered, since the low Reynolds number layer is moved away
from the surface by an amount equal to the displacement thickness of the
boundary layer (ref. 3). The required values of ygp should therefore

be calculated with (8 - 8%),,. in place of 8. in equations (9) and

(10). Expressions for & and 8" for constant surface temperature
were obtained from equations (18) and (22) of reference 9, based on the
flat-plate theory of reference 10. The value of ® was assumed to cor-

respond to ﬁi-: 0.99. At the transition point, these expressions can
be combined to yleld (for v = 1.40)

), - (0 -
) _{8) . z.18 (11)
(£ tr L/¢r Regr

where Lty 18 the distance along the surface to the transition point

and C 1is the proportitnelity constant ip the linear viscosity-
temperature variation. For cones, this expression is divided by 1/3
In terms of (& - ® )t , the bluntness required to cover the laminar

boundary layer with a low Reynolds number layer becomes

yeg  (8/L)gp - (8%/L)gy

=

Lir (8n/Agp)

Yep ;% (r—f)tr[(g)tr - E':)tl] 1/2

Ltr - (An/ASB)

(12)

for wedges and

(13)

for cones.

With equation (12), the calculated bluntness areas agree as closely
as could be expected with the experimental values that produced the
meximim downstream movement of transition in the experiments of refer-
ence 3. This maximum downstream movement was found to_take place for a
leading-edge thickness of about O. 008 inch, which is about two-thirds
of the calculated value. Further inc¢reases in leading-edge thickness
had no appreciable effect on transition location. Since the thickness
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of the low Reynolds number layer has been rather arbitrarily defined,
the values of ygp calculated from equations (12) and (13) can be re-
garded only as rough estimates of the blunting required to produce
maximum downstream movement of transition. These values should, how-
ever, be on the conservative side, since they produce nearly the maxi-~
mum possible reduction in Reynolds number and Mach number over the en-
tire laminar boundary layer.

Inviscid Mach Number Profiles for Blunted Cones and Wedges

Although the maximum effect of blunting on boundary-layer develop-
ment and transition depends on the portion of the shock-produced shear
layer near the surface, the entire shear profile is of interest if the
outer edge of the boundary layer moves out of the low Reynolds number
layer defined In the preceding section. In order to determine the na-
ture of the entire shock-produced shear profile, the shape and location
of the shock must be prescribed. For moderate supersonic speeds, the
hyperbolic form assumed in reference 7 is adequate; but as the flight
speed approaches the hypersonic range, the portion of the shock beyond
the sonic point is increasingly influenced by body shape. This situa-
tion erises partly because the region between the shock and the body
becomes smaller as M, increases; consequently, characteristies from

portions of the body far downstream of the sonic point reach the shock
before it has decayed to its asymptotic strength. In addition, the
overexpansion near the shoulder of slender blunted bodies, which takes
place at lower speeds, gradually becomes an underexpansion at hypersonic
speeds, that is, a Prandtl-Meyer expansion from the sonic point fails
to reduce the pressure to, or below, the asymptotic static pressure. A
rather long process of reflection of expansion waves between the shock
and the body must, therefore, teke place before the asymptotic pressure
is reached on blunted cones or wedges.

This consideration also affects the distance required to obtain
the inviscid surface Mach pumbers and Reynolds numbers calculated in
the preceding sections. A more accurete evaluation of the effect of
blunting would include the variatlion of outer-edge Mach number and
Reynolds number along the entire body due to the pressure gradient.
Perhaps mean values of these numbers could be used to predict the loca-
tion of transition. These mean values would be lower than those shown
in figures 1 and 2, which means that the predicted transition point
would be even farther downstream than if the pressure gradient is neg-
lected. The fact that the self-induced pressure gradient is entirely
favorable also tends to increase the stebility of the laminar layer.
The effect on transition of increasing flight Mach pumber thus appears
to be a favorable one. For computing the shock-produced shear profile,
however, the narrowing region between shock and body as flight speed

3880
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increases introduces difficulties, in that no general shock shape is
avallable beyond the sonic point, and the asymptotic profile may be so
far downstream as to have no practical significance. It was neverthe-
less felt to be worthwhile to compute these asymptotic profiles for very
high Mgy with the hyperbolic shock form of reference 7, if only for

comperison with more accurate future computations based on experimented
shock forms or exact characteristic solutions for particular bodies.
The variation with Mach number of the hyperbolic shock of reference 7
is similar to that which would be expected, in that it decays much more
slowly for hypersonic speeds than for moderate supersonic speeds.

The computation method is presented in appendix C, and the result-
ing asymptotic inviscid shear profiles are shown in figure 4 for flight
Mach numbers from 2 to 20. Indicated on each profile is the thickness
of the low Mach number layer as defined in the preceding section. It
is seen that this definition does, in fact, restrict the Mach number to
values close to the surface value.

The profiles for blunted wedges differ qualitatively from those of
blunted cones at all Mach pumbers. For the blunted wedges, the Mach
number gradient is zero at the surface; whereas, for blunted cones the
gradient has a positive value. Since these gradients depend on the form
of the shock near its vertex, they should be correct for all Mach num-
bers within the limitations of the other assumptions of the analysis
(static pressure equal to values for the unblunted body, constant spe-
cific heat, inviscid flow, etc.). The portions of the profiles ebove
the boundary of the low Mach number layer should be good approximations
for My less than 5.0, but seem to become much too thick at higher Mach
numbers, particularly for the flat plate (6; = O) and for the blunt-
nosed cylinder (6, = 0). This thickness is associated with the very
s8low decay rate of the assumed hyperbolic shock at these Mach numbers.
Since the shock lies quite close to the body at hypersonic speeds, these
profiles would, as previously surmised, be applicaeble, if at all, only
at very large distances from the vertex, where the shear layer is thin
compared with the distance from the surface to the shock wave. At such
distances, of course, the boundary layer, which is of the same order of
thickness as the layer between the shock and the body at hypersonic
speeds, would already have engulfed the entire shock-produced shear
layer.

For higher cone and wedge angles, the shock decays more rapidly to
the asymptotic strength, and the resulting profiles appear to be more
in harmony with expectations.

Although the computed profiles beyond the boundary of the low
Reynolds number layer are not reliable at high Mach numbers, they agree
well with measured profiles at Mach 3.1 (ref. 3). If more accurate
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shock-produced profiles are desired for higher speeds, the shock form
must be calculated for each body shape. Such computations would be use-
ful for estimating the variation of transition location as the blunted
area is gradually increased, but are not required for estimating the
maximm downstream movement, or the blunted area required to produce
this movement. )

Changes in Laminar Recovery Temperature, Heat-Transfer Rate,
and Friction Coefficient

The downstream movement of transition due to blunting means that
larger portions of the aircraft surfaces will be subjected to laminar,
rather than turbulent, heat-transfer rates and friction coefficients.
The blunting should, therefore, produce substantial reductions in over-
all heat-transfer rate and friction drag. There is, however, an in-
crease in laminar equilibrium recovery temperature corresponding to the
reduction in Mach number, and & change in laminar heat-transfer rate and
friction coefficient due to the reduction in Reynolds number. These
mist be evaluated in order to estimate the magnitude of the advantages
due to blunting.

The heat-transfer coefficient and friction-drag equations of refer-
ence 11 are used for this estimate. Although these equations are based
on the assumptions of constant specific heat and Prendtl number, and no
dissociation, they agree in order of magnitude with more exact numerical
computations even at hypersonic speeds (ref. 12).

The ratio of laminar heat-transfer rate with and without blunting
can be written

t, '
9 _ by (fe,n - tw) - ‘\’Mn/Ml g*(?’%va;> (te,n = tw) ; (14)

Q by NTT ty te,l -ty
g* :'.'t‘l'-':Ml

where D and T are defined by equations (4) and (5), te,n and te,1
are equilibrium recovery temperatures with and without blunting, and

te,l -ty

g*(?,;H,M;> is the shear function of reference 11 evaluated at the sur-

face. This function is given in reference 11 for several outer-edge
Mach numbers M, and several ratios of surface temperature to outer-
edge temperature tW/t,.
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The temperature-difference ratio in equation (14) can be written

2
, 1 +0.2M5
ty % %
. % EL + 0. 845( l)Mﬁ - T2 (1 + °°169M§) - -
e n - 0 2 0 1+ 0.24 to
-ty tl T - 1 to. %
L+ 0. 845(_ 2 )Mﬁ 7 L+ 02 (} + 0. lGSMi) =
1+ 0.2M2 o

(15)
where the laminar recovery factor is assumed to be 0.845 and v 1s 1.4.

The ratio of equilibrium surface temperatures with and without
blunting is obtained from the definition of recovery factor:

t - t -t
e,n ttn = Sl - L. 0.5 ~ (16)
Tg - %p To - T4
whence
_&}E-S— +. 0_845
te.n 1+ O.2M§
T, = " 0.155 (17)
e,l ————— + 0.845
1+ O.ZMl
The laminar-skin-friction ratio is, from the equations of reference
11,
tw ) My by
3/2 g*lo,— —_—

R g*( tw,Ml) D

The ratios of laminar recovery temperature, skin friction, and heat
transfer for flat plates are shown in figure 5. Although there is a
glight increase in laminar equilibrium temperature for the blunted flat
plate (this was observed experimentally in ref. 3), the laminar skin
friction is reduced over the entire range of flight Mach numbers, and

the heat-~transfer rate is reduced except for wall temperature near
equilibrium. (The rapid increase in the heat-transfer ratio near re-
covery temperature arises from the small increase in recovery temperature
due to blunting. The heat transfer without blunting approaches zero




14 NACA TN 3653

for these values, whereas the heat transfer with blunting becomes small
but is not yet zero.) TFigure 5 shows that blunting the leading edge of
a flat plete or cylinder can produce, in addition to the longer laminar
run, a small but significant reduction in the skin friction and heat-
transfer rate of the laminar boundary layer itself.

Cooling Requirements for Stebility

The static temperature et the edge of the boundary layer is con-
giderably higher for a blunted cone or wedge than for sharp bodies.
The ratio t,/t; is, in fact, given by 1/D (eq. (4)). This increase
in outer-edge temperature means that, for a given surface temperature
ty, the ratio +ty/tn is smaller than +ty/t1. The outer-edge Mach num-
ber is also reduced. Shown in figure 6 are the outer-edge conditions
for a blunted and unblunted flat plate, and for a blunted and unblunted
10° half-angle cone for a surface-to-ambient temperature ratio of 4.0.
These conditions are compared with two of the laminar stebility limits
given in references 12 and 13. This comparison shows that blunting
moves the outer-edge conditions far into the stable region in the hyper-
sonic speed range. (Although the stability-range curves shown are based
on two-dimensional disturbance theary, recent computations by Dunn and
Lin (ref. 13) indicate that three-dimensional disturbance theory also
yields laminar stability to extremely high Reynolds number but that some-
what lower surface temperatures are required.)

Effect of Blunting on Heat-Transfer Rate Near the Nose

In order to estimate more accurately the net decrease in heat-
transfer rate due to blunting, it is necessary to determine how the
heat-transfer rate near the nose of the blunted cone differs from that
on the pointed cone. An estimate of this difference cen be made by
comparing the heat-transfer rate for the sharp conical nose with that
for the inscribed spherical nose (sketch 3).
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This heat-transfer ratio can be written as

SP _ hsg Asp (TO - tw)

9 Be A (Tej1 - %)

o]

(19)

wvhere the subscripts sp and c¢ refer to the spherical and coniecal
nose, respectively. The area ratio of equation (19) is

ABP tan 6
=2cose (L - sin 8,) (20)

Ae
and the temperature-difference ratio is
-1 Ty
1+71 -
To - by z M% to (21)
Te,l - tw -1

11\42(1+ M’.L) o

The mean heat-transfer coefficient for the spherical nose is assumed to
be the stagnation-point value presented in reference 14:

Nu :
- x, /\( = ( m)sp (22)

U
0 0
where ¢ = - . " Ch, st and (Nu/q/ﬁ ) is about 0.61 for a

Prandtl number of 0.72 and for a ratio of wall temperature to stagnation
temperature (tW/TO) close to zero (corresponding to cooled surfaces at

very high MOS.2 The stagnation pressure coefficient Cp,st is 1.84 for
= 1.4. The mean cone heat-transfer coefficient is, from reference (14),
U
Nu kw 1,c (23)

ZSince the publication of ref. 14, Reshotko and Cohen have found
that the expression for c¢ given therein for supersonic flow is in
error. The correct expression for this constant is that given above.

Lt e m e e e e e e a e e e e e e e 4 g e e R = =
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where (Nu/ﬂ/ReW> is 0.51. The ratio of heat-transfer coefficients,
therefore, becomes

hg To Do 1/2
H(:2= é ( e S \[CP’“ % Poy (24)

ew c

where Pgy 1s the stagnation pressure behind a normal shock at Mach
number My. The heat transfer ratio obtained by substituting equations

(20), (21), and (24) into equation (19) is plotted in figure 7 for cone
half-angles of 10%_and 20° and for a surface-to-ambient static-
temperature ratio of 1.0. The over-all heat transfer for the inscribed
spherical nose is seen to.be less than half as great as that for the
conical nose. The blunted nose, therefore, has the advantage of a lower
heat-transfer rate near the vertex as well as along the downstream
surfaces.

DISCUSSION

The preceding sections have shown that the Reynolds number per unit
length at the outer edge of the boundary layer is lower for blunted fuse-
lages and wings than for unblunted ones. The limited data available
agree with the conclusion that the transition location can be increased
by a factor of the order of -the ratio of the surface Reynolds number
without blunting to the surface Reynolds number with blunting. This
factor increases rapildly with increased flight speed, particularly for
moderately slender wings and bodies.

As. an example of the magnitude of this effect, a 10° bhalf-angle
cone at a Mach number of 15 will be considered. If the transition point
is located 1 foot downstream of the vertex without blunting, it might,
on the basis of figure 2, be moved 25 feet downstream of the vertex if

the tip is blunted.

The bluntness required is, from equations (11) and (13),

1/4
YSB c
758 _ 0,5(3 r)

kg —é%i) is of the order of 10’6, then the required value for ygp 1is

only gbout 5 inches. The ratio of the blunted area to the cross-sectional

area of the cone at the transition point is, therefore, approximately
0.01. If the transition point (25 ft) is near the end of the body, the
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over-all heat-transfer rate would be reduced by blunting from the value
corresponding to almost completely turbulent flow to the value corre-
sponding to completely laminar flow. The blunted cone would, therefore,.
heat up much more slowly than the pointed cone and would require much
less coolant to maintain a given surface temperature. The ratio Ltr/yh

is about 300; therefore, the effect of dissipation of the shock-produced
shear layer can probably be neglected (see appendix B).

Furthermore, during the heating process the ratio of surface tem-
perature to outer-edge temperature remains much lower for the blunted
cone or wedge (fig. 6) so that the advantages of cooled surfaces with
regard to laminar stebility prevail longer than for the pointed cone or
sharp-edged wedges. Both the low surface Reynolds number and the higher
outer-edge temperatures work toward preservation of laminar flow for a
mich larger distence along the.surfaces of blunted bodies and wings.

These advantages with regard to increased laminar run and increased
laminar stebility appear to involve no serious disadvantages. The fric-
tion drag is reduced, and the total drag should not Increase appreciably
for the small required values of the bluntness ratio. Reference 16 shows
that, for spherical-tipped cones of fixed total length, the total drag
to Mach number 7.0 1s very near the value obtained for the sharp-tipped
cone for ratios of nose dlameter to maximm body diameter less than 0.25.

The quantitative effects of blunting on transition location pre-
viously computed are based on the hypothesis that the transition Reyn-
olds number is substantially unchenged when & body with & sharp tip is
blunted. Although this hypothesis produces good agreement with the
experimental results of reference 3, the possibility should certainly
be kept in mind that, at higher Mach numbers or with other body shapes,
the transition Reynolds number may be altered by such factors as pres-
sure gradient and outer-edge Mach number and Reynolds pumber. Further-
more, a5 the length of laminar run increases, the possibility of pre-
mature transition due to surface roughness or stream turbulence also
increases, and the dissipation of the shock-produced shear profile be-
comeg important. Whether any of these ‘factors will seriously reduce the
attainable downstream movement of transition due to blunting remains to
be determined experimentally.

Many theoretical problems also require solution before the quanti-
tative effects of blunting on transition can be predicted with confid-
ence. One basic problem, of course, is that of the development of a
laminar boundary layer in a nonuniform external stream. Solution of
this problem would establish the megnitude of external shear that is
negligible and, consequently, the conditions for which the boundary
layer can be assumed to develop in a layer of reduced Reynolds number
corresponding to the mean value near the surface. This solution might
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reveal whether, as indicated by the results of reference 3, it is suf-
ficient, in general, to obtain the maximum reduction in Reynolds number
only for the inner half or two-thirds of the boundary layer rather than
at the outer edge. The latter question, however, involves predicting
the location of transition for various velocity profiles, which cannot
as yet be done even for laminar layers in a uniform external stream.
Since the required blunting is small, however, this question appears to
be of secondary importance.

CONCLUDING REMARKS

Tt is clear from the preceding discussion that many questions re-
main unanswered in this report. The principal observation that the
Reynolds number and Mach number near the surface are reduced by blunt-
ing, and also the approximate magnitude of the reductions are fairly
well established. The assumption that the boundary-layer development
should be determined primarily by the reduced Reynolds number and Mach
number near the surface rather than by the flow outside the inviscid
shear layer also seems reasonable. The principal benefits from blunt-
ing, however, lie in the hypersonic speed range, where many of the quan-
titative results calculated hereln are subject to corrections whose mag-
nitude is as yet unknown. Qualitative estimates indicate that some of
these corrections, such as the displacement effect or the pressure gra-
dients, either inviscid or self-induced by the boundary layer, should
have a favorable effect on the downstream movement of transition. Other
effects, such as surface roughness, stream turbulence, or changes in
transition Reynolds number, may tend to limit the downstream movement
of transition to values less than those predicted. Dissoclation at
very high Mach numbers may have & significant effect on outer-edge con-
ditions and, consequently, on the maximum transition movement to be ex-
pected. As usuval, when so many unknown factors contribute to & phenom-
enon, experiment must be relied upon to determine which factors are

dominant and which are of minor importance.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio, November 21, 1955
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The following symbols are used in this report:

A

(8% /8 )y

APPENDIX A

SYMBOLS

area

19

isentropic area contraction ratio from Mach number M to

Mach number 1.0

speed of sound

;g (A*/A)MO

constant in linear viscosity-temperature relation

stagnation pressure coefficient

Uo [P0
P Cp st

shear function at surface (ref. 11)
heat-transfer coefficient

thermal conductivity of air

lenéfh of conical tip

Mach number

Nusselt number

stagnation pressure

static pressure

U e —
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heat-transfer rate

Reynolds pumber

recovery facior or radiué

cone radius af station where profiles aie determined
Sutherland's constant for air, 198.6° R
stagnation‘temperature

static temperature

surface temperature

velocity

velocity downstream of normal shock ahead of spherical
nose

distance along surface

coordinate normel to surface

2
MO -1

th +5
tl + 5

ratio of specific heats, 1.40
boundary-layer thickness
boundary-layer displacement thickness
inclination of sonic line (ref. 7)
semivertex angle of cone

semivertex angle of wedge

coefficient of viscosity

w/o
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p
T
0
Subscripts:
C

c

SB
8P
st
tr

W

@

Superscript:

1

density
shear force at surface

shock angle

centroid
cone

equilibrium

21

inviséid surface values for blunted cones or wedges

sonic point on detached shock wave
sonic point on body

sphere

stagnation

transition point

wedge

. surface values

ambient conditions

inviscid surface values for unblunted cones or wedges

value at outer edge of boundery layer

local conditions in inviscid shear layer
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APPENDIX B

DISSTIPATION OF THE LOW MACH NUMBER LAYER

In order to estimate more closely the amount of blunting required
to maintain a given thickness of the low Mach pumber layer, the rate of
digsipation of the shock-produced profile must be considered. The sim-
plest method for estimeting the rate is to consider the profile produced
by the detached shock wave as a step function (sketch 4):

N

Sketch 4

in which the outer velocity is that corresponding to the unblunted body
and the inner velocity is that produced near the surface by blunting the
vertex. The profile dissipation can then be considered identical to
that at the interface of two parallel laminar Jets emerging at the same
static pressure. The equation for the velocity profile in the inter-
action region is given in reference 17 for the case when Uy and Uy

differ by a small asmount. The appropriate equation is:

(- 55 VFer (2 +5) Vo

U-0; 3 Yn
—_— + Bl
Up -0y 2@ LI x/¥n ® 2-Vx/yy (81)

where Y, is the initial thickness of the low Mach number layer, Reyn

is Reynolds number based on y, and outer-flow conditions, and &(a)
is the error function of «. Profiles calculated from equation CBl) for
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'

Rey, = 104 and for several values of x/yn are shown in figure 8.

Apparently, the velocity near the surface does not change appreciably
until x/y, 1is of the order of 1000. Although these profiles are

valid only for small differences between Uy and Up, the order of

magnitude of the dissipation remains the same for large differences
(see £ig. 4.11, ref. 17). The value of x/y, < 1000 is, therefore,

probably a good estimate for the length of run in which dissipation

of the shock-produced shear profile can be neglected if this profile
remains laminar. '

IT transition to turbulence takes place in this layer, the length
of run for which dissipation can be neglected is appreciably reduced.
No experimental results are available to estimate under what conditions
the shock-produced shear profile is likely to undergo transition. How-
ever, an indication of whether transition is a possibility in this
layer can be obtained from the stability criterion for parallel Jets
developed in reference 18. This criterion states that the interface

can become unstable if the quantity %(p g%) vanishes in the interface
profile. However, the profile is stable 1f this quanitity vanishes only
at points in the profile where the velocity satisfies one or both of
the following inequalities:

U< Ul - 8-1

U=>T1, + e,

These conditions assure that disturbances from either stream will not
reach a layer in which amplification is possible.

In terms of Mach pumber profiles, these conditions can be stated
as follows:

The profile is stable {o two-dimensional disturbances if the quantity
a am/ay

ay .
/Jl +I—2-—1M2

vanishes only at points where

My -1
M<
V& - L0 £ 2)

(B2)

o e —— e ¢ e A —— A o e P e g Y s
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or where

Mp + 1
> FTOE - %) (52)

The latter condition cannot be satisfied for M, 2 2.0. Consequently,

the stability of the profile depends chiefly on whether él ___QMZQX;__

: V1 + Xt P

2

vanishes only where condition (B2) is fulfilled. Some sample computa-
tions based on the profiles of figure 4 indicate that condition (B2) is
generally satisfied for the blunted-cone profile but not for the blunted-
wedge profiles. The latter profiles therefore are more inclined to
undergo transition than the former. If transition occurs, the amount of
bluntness required to produce a prescribed thickness of the low Mach num-
ber layer at & glven station may be considerably greater than calculated
on the basis of laminar flow. This discusslion must necessarily be incon-
clusive, since the location or even the existence of transition cannot be
established from stability theory alone.
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APPENDIX C

MACH NUMBER PROFILES FRODUCED BY DETACHED SHOCK WAVES

The Mach number profiles normal to the surfaces of cones and wedges
with slightly blunted tips or leading edges can be calculated from the
one-dimensional continuity equation if (1) the form and location of the
detached shock wave is known, (2) the static pressure is constant normal
to the surface, and (3) diffusion and dissipation of the profile are
neglected. Condition (1) is most conveniently satisfied by using the
detached-shock-wave theory of reference 7. Condition (2) is satisfied
at stations sufficiently far downstream of the nose or leading edge,
where the surface static pressure has reached, or closely approached,
the value obtained with unblunted cones or wedges. At moderate super-
sonic Mach numbers, the required distance is of the order of 3 to 10
times the thickness of the blunted portion of the nose or leading edge.
This condition is not quite satisfied for blunted cones, because the
flow field approaches a conical distribution cheracterized by a gradual
decrease of static pressure from the surface to the shock wave. But if
the profile extends only a small portion of the distance from the sur-
face to the shock wave, this gradient can be neglected without serious
error. Condition (3) remains an assumption whose validity decreases as
the distance along the body increases. It implies that the profile re-
maing unchanged in form for an unlimited distance downstream of the ver-
tex. As pointed out in appendix B, this assumption appears to be fairly
good for distances of the order of 1000 times the thickness of the
blunted portion of the body if the profile remains laminar.

The profile computation is set up with the aid of sketch 5, ,which

Sketch 5
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applies either for comes or wedges. If the sonic-point area of the body
is used for reference purposes, the continuity equation can be written as

AfAsp

AT foYo A (c1)
ASB - o'y’ A—ég

or
A/

Py (A*IA)MO
Bsp - B /A d(ASB)

(c2)

where the primes refer to local conditions in the inviscid shear layer.
Since the stagnation pressure along each streamline remains constant
downstream of the shock, P'/Po is the stagnation-pressure ratio across
the shock at the point where the streamline bounding the area A enters
the shock. If the shock angle &t this point is ¢, then the total-
pressure ratio can be written (ref. 19)

7/2 5/2

. 2 .2
P! _ 6M051n (0] 6 (C3)
Po Mgsin2¢ +5 7Mgsin2¢ -1

The Mach number M' at the area A' can also be expressed in terms of
shock angle by the relation

r-1

- 2/1
i\ T + Pn D
1+ 0.2M'% = (E—) = (3- 2 —9> (ca)

1% Po Py Py

The function (A®/A)y:, as well as P'/Py, is a function of the shock
angle @ at the point where the streamline crosses the shock wave. The
differential d(A/ASB) of equation (C2) must be converted into a func-
tion of @ 1in order that the integration may be carried out from

9 =90° to ¢= ¢, vhere ¢ 1s the shock angle corresponding to the
unblunted cone or wedge. The Mach number M' as a function of A' can
then be obtained from equations (C4) and (C3).
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From reference 7 (eq. (5)), the relation between shock angle and
shock ordinate for the assumed hyperbolic wave is

2 2
v (XO/YSB)
= (cs)
YSB p2(B2tanp -~ 1)
where
X0 Js 2, 2

and @g 1is the shock angle at the shock sonic point. The ratio ys/ysB
is a function of M, and depends on whether the flow 1is two-dimensional
or axially symmetric.

The area differential of equation (cz) can now be expressed as
follows:

For two-dimensional flow:

X 2
A T\ _ 0 tan ¢ sec ¢ do
d(ASB) d(YSB> P Yop [(thanzq) - 1)3/ Z] ()

For axially symmetric flow:

il

a

2 %5 2 o 1
i) = a[-X) = -2( ) tap 0 sec @ 04 (c8)
SB YsB ¥sB) |(p2tan®e - 1)2
Combination of equations (C2) to (C8) ylelds the following final
expressions for determining the variation of M' with A':

i

For plapne flow:

Al
Agp 1+ 0.2M (pZtanp - 1)3/

90°

1 + 0.2M2 ]Jzub 2
= L. g? petanfeg - 1 ”‘”“““95 T ( L z)dcp (c9)
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For axislly-symmetric flow:

4 1/2

2
' ¥ P 1 + 0. My 2
A =_232( S) (thaDZCPS _]) 0 - (tan ¢ sec ch)qu

Agp YsB 21 1 + 0.2M'2 (B2tanp -1)
(c10)
In these equations, y' is the linear distance normal to the wedge or
cone. For y! << rj, the area ratio A'/ASB in equation (10) is equal

2riy! '

1
2 -
YsB

to

Equations (C9) and (C10) have been integrated numerically for sev-
eral Mach numbers and for several wedge and cone angles. The resulting
Mach number profiles are shown in figure 4.
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